Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs
نویسندگان
چکیده
Several recently developed multisymplectic schemes for Hamiltonian PDEs have been shown to preserve associated local conservation laws and constraints very well in long time numerical simulations. Backward error analysis for PDEs, or the method of modified equations, is a useful technique for studying the qualitative behavior of a discretization and provides insight into the preservation properties of the scheme. In this paper we initiate a backward error analysis for PDE discretizations, in particular of multisymplectic box schemes for the nonlinear Schrodinger equation. We show that the associated modified differential equations are also multisymplectic and derive the modified conservation laws which are satisfied to higher order by the numerical solution. Higher order preservation of the modified local conservation laws is verified numerically.
منابع مشابه
Conservation properties of multisymplectic integrators
Recent results on the local and global properties of multisymplectic discretizations of Hamiltonian PDEs are discussed. We consider multisymplectic (MS) schemes based on Fourier spectral approximations and show that, in addition to a MS conservation law, conservation laws related to linear symmetries of the PDE are preserved exactly. We compare spectral integrators (MS vs. non-symplectic) for t...
متن کاملBackward error analysis for multi-symplectic integration methods
A useful method for understanding discretization error in the numerical solution of ODEs is to compare the system of ODEs with the modified equations obtained through backward error analysis, and using symplectic integration for Hamiltonian ODEs provides more incite into the modified equations. In this paper, the ideas of symplectic integration are extended to Hamiltonian PDEs, and this paves t...
متن کاملMultisymplectic structures and the variational bicomplex
Multisymplecticity and the variational bicomplex are two subjects which have developed independently. Our main observation is that re-analysis of multisymplectic systems from the view of the variational bicomplex not only is natural but also generates new fundamental ideas about multisymplectic Hamiltonian PDEs. The variational bicomplex provides a natural grading of differential forms accordin...
متن کاملAccuracy of classical conservation laws for Hamiltonian PDEs under Runge-Kutta discretizations
We investigate conservative properties of Runge-Kutta methods for Hamiltonian PDEs. It is shown that multi-symplecitic Runge-Kutta methods preserve precisely norm square conservation law. Based on the study of accuracy of Runge-Kutta methods applied to ordinary and partial differential equations, we present some results on the numerical accuracy of conservation laws of energy and momentum for H...
متن کاملSplit-Step Multi-Symplectic Method for Nonlinear Schrödinger Equation
Multi-symplectic methods have recently been considered as a generalization of symplectic ODE methods to the case of Hamiltonian PDEs. The symplectic of Hamiltonian systems is well known, but for Partial Differential Equation (PDEs) this is a global property. In addition, many PDEs can be written as Multisymplectic systems, in which each independent variable has a distinct symplectic structure. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 69 شماره
صفحات -
تاریخ انتشار 2005